DS no 4

Ex 1: +1 ou -0,5.

Un lecteur d'une bibliothèque est passionné de romans policiers et de biographies. Cette bibliothèque lui propose 150 romans policiers et 50 biographies. 40% des écrivains de romans policiers sont français et 70% des écrivains de biographies sont français. Le lecteur choisit un livre au hasard parmi les 200 ouvrages. Ne justifiez pas vos réponses.

4	1 1 1 1 1 1 1 1 1			1		1
1.	La probabilité	que le	lecteur	choisisse i	un roman	policier est

a. 0.4.

b. 0.75.

c. $\frac{1}{150}$

2. Le lecteur ayant choisi un roman policier, la probabilité que l'auteur soit français est :

a. 0,3

b. 0,8.

c. 0,4.

3. La probabilité que le lecteur choisisse un roman policier français est :

a. 1,15.

b. 0,4 .

c. 0,3.

4. La probabilité que le lecteur choisisse un livre d'un écrivain français est :

a. 0,9

b. 0,7.

c. 0,475.

5. Lorsque l'écrivain est français, la probabilité que le livre soit un roman policier est :

a. $\frac{4}{150}$

b. $\frac{12}{19}$

c. 0,3.

6. Le lecteur est venu 20 fois à la bibliothèque, la probabilité qu'il ait choisi au moins un fois un roman policier est :

a. $1-(0.25)^{20}$.

b. 20×0.75 .

c. $0.75 \times (0.25)^{20}$.

7. Le lecteur est venu 5 fois à la bibliothèque, la probabilité qu'il ait choisi exactement deux fois un roman policier est, à 10^{-4} près :

a. 0.0879

b. 0,00879

c. 0.5625

Ex 2 : Déterminez les limites.

1. $f(x) = \frac{x^3 + 5x^2 + 7x + 3}{x^2 - 9}$ en -oo, +oo, -3 et 3.

2. $f(x) = \sqrt{x+4} - \sqrt{x-2}$ en +oo.

3. $f(x) = \frac{2\sqrt{x+2}}{x-3}$ en +oo.

4. $f(x) = \frac{3\cos x + 3}{2x - 2\pi}$ En π .

Ex 3 : Problème.

1. Soit $g(x)=2x^3+x^2-1$ une fonction définie sur \mathbb{R} .

a. Etudier les variations de g sur $\ensuremath{\mathsf{IR}}$.

b. En déduire que g(x)=0 admet une et une seule solution α sur $\mathbb R$ et déterminez α à 10^{-2} près.

2. Soit $f(x) = \frac{1}{3}(x^2 + x + \frac{1}{x})$ définie sur IR /{0}

a. Démontrer que $f'(x) = \frac{g(x)}{x^2}$.

b. En déduire les variations de f sur \mathbb{R} /{0} (Indiquer les limites aux bornes de l'ensemble de définition).