DS TS no2

Ex 1: Apéritif.

Soit $f(x) = \sqrt{x^2 - 4x + 8}$ de courbe représentative (C_f) dans un repère $(O; \vec{i}, \vec{j})$.

- 1. a. Déterminez le domaine de définition et de dérivation de f.
 - b. Déterminez les limites de f en +00 et -00.
 - c. Déterminez f' et étudiez les variations de f.
- 2. Déterminez une équation de la tangente à (C_f) à l'abscisse 2,
- 3. a) Démontrez que (d_1) : y=x-2 est asymptote à (C_f) en +oo.
 - b) Démontrez que (d_2) : y=2-x est asymptote à (C_f) en -oo.
- 4. En utilisant toutes les informations récoltées dans les questions précédentes, tracez $(C_f)\,$.

Ex 2 : Entrée.

Soit $(\boldsymbol{U}_{\scriptscriptstyle n})$ la suite définie par $\boldsymbol{U}_{\scriptscriptstyle n+1} {=} \frac{5 \mathbf{U}_{\scriptscriptstyle n} {+} 4}{\boldsymbol{U}_{\scriptscriptstyle n} {+} 2}$ et $\boldsymbol{U}_{\scriptscriptstyle 0} {=} \mathbf{0}$,

- 1. En utilisant la calculatrice, donnez les 7 premiers termes de cette suite. Que semble-t-il ?
- 2. Démontrez que pour tout $n \in \mathbb{N}$, $U_n \ge 0$.
- 3. Résolvez $\frac{5x+4}{x+2} = x$ sur \mathbb{R} .
- 4. Soit (V_n) la suite définie par $V_n = \frac{U_n 4}{U_n (-1)}$.
 - a. Démontrez que (V_n) est géométrique. Précisez la raison et le premier terme.
 - b. Exprimez $\,U_{\scriptscriptstyle R}\,$ en fonction de $\,V_{\scriptscriptstyle R}\,$. Justifiez.
 - c. déduisez-en la limite de $\ensuremath{\left(U_{\scriptscriptstyle n}\right)}$.

Ex 3 : Dessert.

- 1. Un employé commence avec un salaire annuel de 13000 euros qui est augmenté de 5% chaque année. Combien d'argent aura-t-il gagné en 40 ans de carrière ?
- 2. Un autre commence avec salaire annuel de 15000 euros qui est augmenté de 640€ chaque année. Combien d'argent aura-t-il gagné en 40 ans de carrière ?

(On pourra appeler (U_n) la suite telle que U_n soit le salaire annuel de la $n+1^{i\grave{e}me}$ année)

Ex 4: Pousse café.

Calculez $(1+i)^6$.