Dm TS No 6

Ex 1:

Soit (Un) la suite définie pour nEN par $U_{n+1} = \frac{2U_n + 3}{U_n + 4}$ et U0=0. On admet que, pour nEN*, 0<Un<1.

- 1. Démontrez que (Un) est croissante.
- 2. Soit (Vn) la suite définie pour nEN par $V_n = \frac{U_n 1}{U_n + 3}$.
 - a. Démontrez que (Vn) est géométrique. Précisez la raison et le premier terme.
 - b. En déduire le comportement à l'infini de (Vn).
- 3. Exprimez U_n en fonction de V_n et en déduire le comportement à l'infini de (Un).

Ex 2:

Soit f(x)=tan(x).

- 1. Déterminez le domaine de définition et de dérivation de f.
- 2. Déterminez la parité et la périodicité de f. Expliquez pourquoi on étudiera f sur $[0; \frac{\pi}{2}]$.
- 3. Déterminez la limite de f en $\frac{\pi^{-}}{2}$.
- 4. Démontrez que $f'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$.
- 5. Etudiez les variation de f sur $[0; \frac{\pi}{2}]$.
- 6. Déterminez l'équation de la tangente à la courbe de f en 0.
- 7. Dans un repère orthonormé, tracez la courbe représentative de f sur $\left] -\frac{3\pi}{2}; \frac{3\pi}{2} \right[$.

Ex 3 : les questions sont indépendantes

- 1. Exprimez $(e^{-x})^3$; $\frac{1}{e^{2x}}$; $e \times e^x$, $\sqrt{e^{-2x}}$ en fonction de e^x .
- 2. Démontrez que $f(x) = \frac{1 e^x}{1 + e^x}$ est impaire.
- 3. Démontrez que $\lim_{x\to 0} \frac{e^x-1}{x} = 1$.