Dm TS no12

Ex1:

Dans toute cette partie, n désigne un entier naturel non nul. A tout n on associe la fonction f_n définie sur]-1;+oo[par $f_n(x)=x^n\ln{(1+x)}$. On appelle C_n la courbe de f_n dans un repère orthonormé $(O;\vec{i},\vec{j})$ d'unité 2cm.

- 1. Soit h_n la fonction définie sur]-1;+oo[par $h_n(x) = nln(1+x) + \frac{x}{1+x}$. Etudiez les variation de h_n . En utilisant $h_n(0)$), déterminez le signe de $h_n(x)$ sur]-1;+oo[.
- 2. a. Pour tout $x \in]-1;+\infty[$, vérifiez que $f'_1(x)=h_1(x)$ puis que, pour tout n>1, $f'_n(x)=x^{n-1}h_n(x)$.
 - b. On suppose n impaire. Justifiez que f'_n et h_n ont le même signe sur]-1;+oo[. Dressez le tableau de variation de f_n lorsque n est impair en précisant les limites en -1 et +oo.
 - c. On suppose n pair. Dressez de même le tableau de variation de f_n lorsque n est impair en précisant les limites en -1 et +00.
- 3. a. Etudiez la position relative de C_1 et C_2
 - b. Tracez ces deux courbes.

Ex 2:

Une usine fabrique des stylos. Une étude montre que 90% de la production n'a aucun défaut. Un contrôle de qualité est mis en place. Il refuse 94% des stylos avec défaut et accepte 92% des stylos sans défaut. On choisit au hasard un stylo avant son passage au contrôle.

D= « le stylo a nu défaut », A= « le stylo est accepté au contrôle ».

- 1. a. Calculer la probabilités de E_1 = « Le stylo est accepté et n'a pas de défaut » et E_2 = « Le stylo est accepté et a un défaut ».
 - b. Calculer la probabilité qu'un stylo soit accepté.
- 2. Le contrôle permet-t-il d'affirmer que moins de 1% des stylos acceptés présentent un défaut ?
- 3. Les stylos acceptés se vendent par paquets de quatre. On admet que la probabilité qu'un stylo accepté présente un défaut est de 0,007. Calculer à 10^{-3} près la probabilité qu'un paquet contiennent au moins un stylo qui a un défaut.