Logarithme népérien.

I. <u>Définition</u>, caractéristique et conséquences,

Rem:

La fonction inverse étant continue sur]0;+00[, elle admet des primitive sur cet intervalle.

Déf:

On appelle fonction logarithme, notée ln, la primitive de la fonction inverse sur]0;+00[qui s'annule en 1 :

$$(\ln(x))' = \frac{1}{x}$$
 pour tout $x \in \mathbb{R}^{+*}$.

Equation caractéristique:

Tout fonction définie pout tout $x \in \mathbb{R}^{+*}$ et vérifiant $f(a \times b) = f(a) + f(b)$ pour tout a et b de]0;+oo[est du genre f(x)=kln(x) où k est une constante réelle et réciproquement.

Dém:

• <u>Sens direct</u>: pour tout $a \in \mathbb{R}^{+*}$, et tout $x \in \mathbb{R}^{+*}$, $f(a \times x) = f(a) + f(x)$

En dérivant par rapport à x on obtient af'(ax)=f'(x), pour tout $a \in \mathbb{R}^{+*}$ et tout $x \in \mathbb{R}^{+*}$. Pour x=1, af'(a)=f'(1) pour tout $a \in \mathbb{R}^{+*}$.

D'où, pour tout $a \in \mathbb{R}^{+^*}$, f'est de la forme $f'(a) = k \times \frac{1}{a}$ et f est une primitive de la fonction $k \times \frac{1}{x}$ sur \mathbb{R}^{+^*} et k=f'(1).

Or f $(1)=f(1\times 1)=f(1)+f(1)$. Donc f(1)=0. Donc f est la primitive de $k\times \frac{1}{x}$ qui s'annule en 1.

On en déduit, Ln(x) étant la primitive de $\frac{1}{x}$ qui s'annule en 1, que f est de la forme f(x)=kln(x).

• Réciproque: Soit $F(x)=\ln(kx)$ pour tout $x \in \mathbb{R}^{+*}$ et $k \in \mathbb{R}^{+*}$.

On sait que F est dérivable sur \mathbb{R}^{+*} et que $F'(x)=k\times\frac{1}{kx}=\frac{1}{x}$ sur cet intervalle : f est donc une primitive de la fonction inverse.

F est donc de la forme F(x)=lnx+c avec $c \in \mathbb{R}$. Or ln1=0. On en déduit c=F(1)=ln(k). AinsiF(x)=ln(kx)=lnk+lnx pour tout $x \in \mathbb{R}^{+*}$ et $k \in \mathbb{R}^{+*}$.

Prop : pour tout a et b de]0;+oo[:

- In(ab)=Ina + Inb
- $\ln \left(\frac{1}{b} \right) = -\ln b$
- $\ln\left(\frac{a}{b}\right) = \ln a \ln b$
- $\ln(a^n) = n \ln a$ pour tout $n \in \mathbb{N}$
- $\ln (\sqrt{(a)}) = \frac{1}{2} \ln a$

Dém:

- · Ln (ab)=lna + lnb découle directement de l'équation caractéristique.
- $\ln(b \times \frac{1}{b}) = \ln(1) = 0$

Ainsi,
$$lnb \times ln(\frac{1}{b}) = 1$$
 et $ln b = -ln(\frac{1}{b})$.

- Pour $\ln a^n$, on procède par récurrence.
 - * Pour n=0, on a bien $\ln a^0 = \ln l = 0 = 0 \ln a$
 - * Supposons qu'il existe n in setn tel que $\ln(a^n) = n \ln a$.

$$\ln a^{n+1} = \ln (a^n \times a) = \ln a^n + \ln a = n \ln a + \ln a = (n+1) \ln a$$
: la propriété devient vraie au rang n+1

- * Par récurrence, $\ln{(a^n)} = n \ln{a}$ pour tout $n \in \mathbb{N}$.
- * $\ln a = \ln(\sqrt{a} \times \sqrt{a}) = \ln(\sqrt{a}) + \ln(\sqrt{a}) = 2 \ln \sqrt{a}$.

d'où
$$\ln(\sqrt{a}) = \frac{1}{2} \ln a$$
.

II. Etude de la fonction In.

1. Variation.

Prop:

La fonction logarithme est continue et dérivable sur]0;+oo[et sur cet intervalle (ln(x)')=1 over x. Ainsi la fonction logarithme est croissante strictement sur]0;+oo[.

Conséquences:

Pour tout a et b dans]0;+oo[,

- ln(a)=ln(b) si et seulement si a=b
- ln(a)<ln(b) si et seulement si a<b/li>
- ln(a)>ln(b) si et seulement si a>b
 - 2. Limite en 0tet +oo.

Prop:

$$\lim_{x\to 0^+} \ln x = -\infty \quad et \quad \lim_{x\to +\infty} \ln x = +\infty \quad .$$

Dém:

3. Comparaison en 0⁺ et +oo.

Prop:

Pour tout entier naturel n , $\lim_{x\to +\infty}\frac{\ln x}{x^n}=0$ et $\lim_{x\to 0^+}x^n\ln x=0$

Dém:

• Soit $f(x) = \sqrt{x} - \ln x$.

f est dérivable sur]0;+oo[et $f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} = \frac{\sqrt{x}-2}{2x}$.

D'où le tableau ci-dessous :

X	0	4 +00
f'(x)		- +
f		2-ln4

Or 2-ln4>0 donc f(x) est positif strictement sur]0;+00[et sur cet interavalle, $lnx < \sqrt{x}$.

• Pour tout x>1, et tout $n \in N^*$, $x^n > \sqrt{x}$ donc $\frac{\ln x}{x^n} < \frac{\sqrt{x}}{x^n}$

comme $\lim_{x\to +\infty} \frac{\sqrt{x}}{x^n} = 0$, d'après le théorème des gendarmes, $\lim_{x\to +\infty} \frac{\ln x}{x^n} = 0$

• Posons maintenant $X = \frac{1}{x}$.

X tend vers 0 équivaut à x tend vers +00 donc

$$0 = \lim_{x \to +\infty} \frac{\ln x}{x^{n}} = \lim_{X \to 0^{+}} \frac{\ln \left(\frac{1}{X}\right)}{\left(\frac{1}{X}\right)^{n}} = \lim_{X \to 0^{+}} -\ln X \times X^{n}$$

4. Tangente en 1 et conséquence

 $f(x)=Ln \times est dérivable sur]0;+oo[et f'(x)= <math>\frac{1}{x}$.

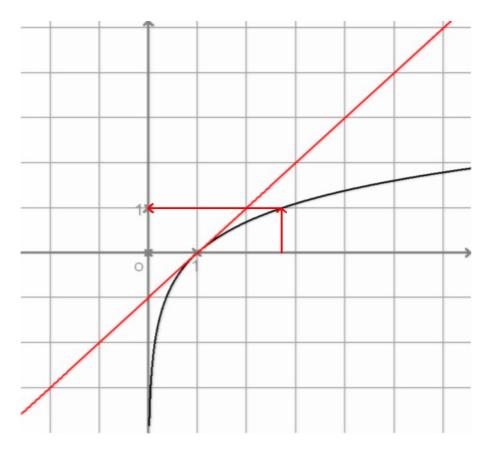
La tangente à la courbe de f en 1 a pour équation :

$$y=f'(1)(x-1)+f(1)$$

$$y=1(x-1)+0$$

Par conséquent,
$$\lim_{x\to 1} \frac{\ln x - \ln 1}{x-1} = \lim_{x\to 1} \frac{\ln x}{x-1} = f'(1) = 1$$

5. Courbe représentative.



III. Dérivés et primitives

Prop:

Soit u une fonction dérivable sur Ic \mathbb{R} à valeurs dans]0;+00[. Alors f(x)=lnu(x) est dérivable sur]0;+00[et $f'(x)=\frac{u'(x)}{u(x)}$

Prop:

Soit u une fonction continue sur IcR qui ne s'annule pas sur I. Alors, une primitive de $f(x) = \frac{u'(x)}{u(x)}$ sur I est $F(x) = \ln|u(x)|$.

Dém:

Si u(x)>0 alors
$$F(x) = \ln|u(x)| = \ln(u(x))$$
 et $F'(x) = \frac{u'(x)}{u(x)} = f(x)$

$$\text{si u(x)<0 alors} \quad F(x) = \ln|u(x)| = \ln(-u(x)) \ et \ F'(x) = \frac{-u'(x)}{-u(x)} = f(x)$$

IV. Lien avec exponentielle.

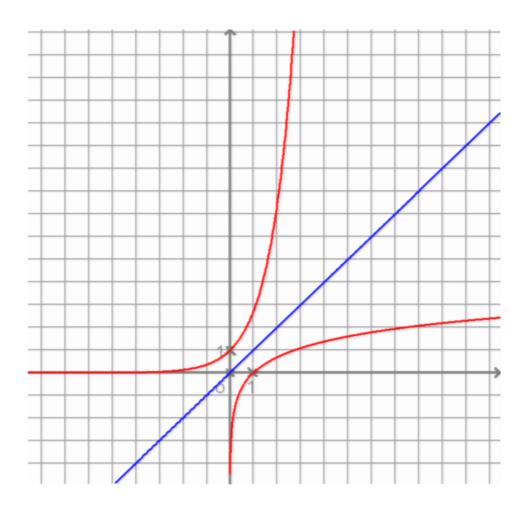
1. le lien.

Prop:

- Pour tout $m \in \mathbb{R}$, $\ln x = m$ admet une et une seule solution qui est e^m .
- Pour tout $x \in \mathbb{R}$, $lne^x = x$
- Pour tout x in]0;+oo[, $e^{lnx} = x$

Dém:

- $f(x)=\ln x$ est continue et strictement monotone sur]0;+oo[. Comme $\lim_{x\to 0^+}\ln x=-\infty$ et $\lim_{x\to +\infty}\ln x=+\infty$, d'après le théorème des valeurs intermédiaires, pour tout $m\in \mathbb{R}$, $\ln x=m$ admet une et une seule solution $x_m\in \mathbb{R}$.
- Soit g la fonction qui a tout $m \in \mathbb{R}$ associe la solution de lnx=m. La courbe de g a pour équation y=g(x) avec x=lny. Ainsi la courbe de g est symétrique de la courbe de f par symétrie axiale d'axe (d) d'équation y=x.



(On remarque que g(0)=1)

Par conséquent, la courbe de g admet une tangente en tout point sur R. Cette tangente ne peut être vertiacale car f n'admet aucune tangent horizontale.

g est donc dérivable sur \mathbb{R} .

• $\ln(g(x))$ est donc dérivable sur setr et $\ln(g(x))' = g'\frac{(x)}{g}(x)$.

or
$$\ln(g(x)=x \text{ donc } \frac{g'(x)}{g(x)}=1$$
.

On a ainsi : $\begin{cases} g' = g \\ g(0) = 1 \end{cases}$ c'est la caractéristation de la fonction exponentielle : $g(x) = e^x$.

V. Puissances réelles.

1. Déf.

Déf:

Pour tout $a \in]0+\infty[$ et tout $x \in \mathbb{R}$, on pose $a^x = e^{x \ln a}$.

Prop:

Cette définition est compatible avec les puissances entières et pour tout a et b de]0;+oo[et tout x_1 et x_2 de $\mathbb R$, on a :

$$a^{x_1} \times a^{x_2} = a^{x_1 + x_2}$$

$$\frac{a^{x_1}}{a^{x_2}} = a^{x_1 - x_2}$$

$$a^{x_1} \times b^{x_1} = (ab)^{x_1}$$

$$(a^{xl})^{x_2} = a^{x_1 + x_2}$$

Dém:

- Si $x \in \mathbb{N}$, $e^{xlna} = e^{lna^x} = a^x$.
- Pour les formules c'est toujours le même principe : on remplace a^x par e^{xlna} , on applique les règles de calculs de la fonction exponentielles puis on revient à une notation en a^x .

$$a^{x_1} \times a^{x_2} = e^{x_1 \ln a} \times e^{x_2 \ln a} = e^{x_1 \ln a + x_2 \ln a} = e^{(x_1 + x_2) \ln a} = a^{x_1 + x_2}$$

2. Exponentielle de base a

Déf:

Soit $a \in \mathbb{R}^{+^*}$. La fonction f qui a tout $x \in \mathbb{R}$ associe a^x est un e exponentielle de base a telle que :

- Si $a \in]0;1[$, f est décroissante de +00 à 0^+
- Si a=1, la fonction est constant égale à 1.
- Si $a \in]1;+\infty[$, f est croissante de O^+ à +oo.

Dém:

$$f(x) = e^{x \times lna}$$

Posons X=x Ina.

• Si , $a \in]1;+\infty[$, x tend vers +00 équivaut à X tend vers -00 et x tend vers -00 équivaut à X tend vers -00. D'où :

$$\lim_{x \to +oo} f = \lim_{X \to +oo} e^x = +oo \text{ et } \lim_{x \to -oo} f = \lim_{X \to -oo} e^x = 0^+$$

• Si , x $a \in]0;1[$, x tend vers +00 équivaut à X tend vers -00 et x tend vers -00 équivaut à X tend vers +00. D'où :

$$\lim_{x \to +oo} f = \lim_{X \to -oo} e^x = 0^+ \text{ et } \lim_{x \to -oo} f = \lim_{X \to +oo} e^x = +oo .$$

• fest dérivable sur \mathbb{R} et $f'(x)=\ln a e^{x\ln a}$

Donc, si $a \in]0;1[$, lna<0 et f'(x)<0 et si $a \in]1;+\infty[$, lna>0 et f'(x)>0.

