Produit scalaire

Ex: angles

Dans un repère orthonormé, on donne A(1 ;2), B(4 ;2+ $\sqrt{3}$) et C (2 ;2- $\sqrt{3}$). Déterminez tous les angles géométriques de ABC.

Ex :orthogonalité

Soit ABC un triangle rectangle en A. Soit H le projeté orthogonal de A sur (BC). H se projette orthogonalement en I sur (AB) et en J sur (AC). Soit A' le milieu de [BC].

- 1. Exprimer \overrightarrow{AA} en fonction de $\overrightarrow{AB} + \overrightarrow{AC}$. Justifier.
- 2. Puisque $\overrightarrow{IJ} = \overrightarrow{IH} + \overrightarrow{HA} + \overrightarrow{AJ}$, démontrer que $\overrightarrow{AB}.\overrightarrow{IJ} = \overrightarrow{AB}.\overrightarrow{HA}$.
- 3. Puisque $\overrightarrow{IJ} = \overrightarrow{IA} + \overrightarrow{AH} + \overrightarrow{HJ}$, démontrer que $\overrightarrow{AC}.\overrightarrow{IJ} = \overrightarrow{AC}.\overrightarrow{AH} = -\overrightarrow{AC}.\overrightarrow{HA}$.
- 4. En utilisant 1.,2. et 3. , Démontrer que $\overrightarrow{AA}'.\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{AH}.\overrightarrow{BC}$.
- 5. En déduire les positions relatives de (IJ) et (AA').

Ex: avec des barycentres

ABC est un triangle équilatéral de côté a. I est le barycentre de $\{(A;1),(B;4)\}$ et J le barycentre de $\{(A;3),(C;2)\}$.

- 1. Déterminer $\overrightarrow{AI}.\overrightarrow{AC}$ et $\overrightarrow{AJ}.\overrightarrow{AC}$.
- 2. Montrer que (IJ) et (AC) sont orthogonales.

<u>Ex :</u>

[AB] est un diamètre d'un cercle Γ de centre O et de rayon 3cm. Soit $C \in \Gamma$ tel que AC = 2. H est le pied de la hauteur issue de C dans ABC. La tangente à Γ en C coupe (AB) en K.

- 1. En calculant de deux façons différentes $\overrightarrow{AB}.\overrightarrow{AC}$, démontrer que $AH=\frac{2}{3}$. En déduire OH.
- 2. En calculant $\overrightarrow{OB}.\overrightarrow{OC}$ de 2 façons différentes, déterminer la mesure de $B\widehat{OC}$ à0,1 près.

Ex:

Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, soit A(2;2) et B(6;0).

- 1. Déterminez une équation du cercle $\mathcal C$ de diamètre [OA]. Justifiez.
- 2. Soit (d) la tangente à Cen A. Déterminez son équation. Justifiez.
- 3. Déterminez les mesures des angles de AOB. Justifiez.

Ex: Al-Kashi et les angles

Soit ABC un triangle isocèle tel que $B\hat{A}C = \frac{5\pi}{6}$ et BA=BC=1.

- 1. Démontrer que BC= $\sqrt{2+\sqrt{3}}$.
- 2. a. Déterminer $A\hat{B}C$.
 - b. Exprimer $\cos A\hat{B}C$ en fonction de AB, BC et AC.
 - c. En déduire que $\cos \frac{\pi}{12} = \frac{\sqrt{2 + \sqrt{3}}}{2}$
- 3. a. Montrer que $\sin \frac{\pi}{12} = \frac{\sqrt{2-\sqrt{3}}}{2}$
- b. Calculer $\cos(2\times\frac{\pi}{12})$ sans utiliser $\frac{\pi}{6}$ pour vérifier nos calculs

Rappel:

Cos(a+b)=cosacosb-sinasinb Cos(a-b)=cosacosb+sinasinb Sin(a+b)=sinacosb+cosasinb Sin(a-b)=sinacosb-cosasinb Cos(2a)= cos^2a - sin^2a Sin(2a)=2cosasina Cos^2a + sin^2a =1 Al-Kashi: a^2 = b^2 + c^2 -2bccos Â. Aire= $\frac{1}{2}bc sin Â$