GENERALITES SUR LES FONCTIONS

I) Opérations sur les fonctions.

1) Egalité de deux fonctions :

Dire que deux u et v sont égales (on note u = v) signifie que :

- u et v ont le même ensemble de définition D ;
- pour tout réel x de D, u(x) = v(x).

Ex:

• u et v sont définies sur \mathbb{R} - { -1} par $u(x) = 3 - \frac{2}{x+1}$ et $v(x) = \frac{3x+1}{x+1}$.

Les fonctions u et v ont le même ensemble de définition et pour tout réel $x \neq -1$,

$$u(x) = 3 - \frac{2}{x+1} = \frac{3(x+1)-2}{x+1} = \frac{3x+1}{x+1} = v(x)$$
. Donc $u = v$.

2) Opérations sur les fonctions :

Soit u et v deux fonctions définies sur le **même** ensemble D, et k un réel non nul.

opération	notation	définition	définie pour :
fonction somme de u et du réel k	u+k	(u+k)(x)=u(x)+k	D
fonction produit de u et du réel k	ku	$(ku)(x) = k \times u(x)$	D
fonction somme des fonctions u et v	<i>u</i> + <i>v</i>	(u+v)(x)=u(x)+v(x)	D
fonction produit des fonctions u et v	UV	$(uv)(x) = u(x) \times v(x)$	D
fonction inverse de la fonction ν	$\frac{1}{\nu}$	$(\frac{1}{v})(x) = \frac{1}{v(x)}$	Det $v(x) \neq 0$
fonction quotient de la fonction u par v	$\frac{u}{v}$	$(\frac{u}{v})(x) = \frac{u(x)}{v(x)}$	D et <i>ν</i> (<i>x</i>) ≠ 0

<u>Ex :</u>

u et v sont les fonctions définies sur R par $u(x) = x^2$ et v(x) = x + 3.

- pour tout réel x, $(u+v)(x) = x^2 + x + 3$, $(uv)(x) = x^2(x+3)$, $(2u) = 2x^2$, $(u+2)(x) = x^2 + 2$;
- pour tout réel $x \neq -3$, $(\frac{1}{v})(x) = \frac{1}{x+3}$ et $(\frac{u}{v})(x) = \frac{x^2}{x+3}$.

3) Variations : (dém en exercices)

Soit *u* et *v* deux fonctions définies sur le **même** ensemble D, et *k* un réel non nul.

- Les fonctions u et u + k ont le même sens de variation sur D.
- Si k > 0, les fonctions u et ku ont le même sens de variation sur D.
 Si k < 0, les fonctions u et ku ont des sens de variation contraire sur D.
- Si u et v sont croissantes sur D, alors u + v est croissante sur D. Si u et v sont décroissantes sur D, alors u + v est décroissante sur D.

ATTENTION:

Si on connaît le sens de variation des deux fonctions u et v, on ne peut rien dire de façon générale sur le sens de variation des fonctions produit uv et quotient $\frac{u}{v}$. De même si u et v varie de sens contraire, on ne peut pas conclure pour la somme u+v. Il nous faut un outil plus performant : à voir dans les prochains épisodes !

II) Composition de fonctions.

1) Définition :

Soient u et v deux fonctions telle que u prends ses valeurs dans le domaine de définition de v. On appelle fonction composée de u par v, la fonction obtenue par le montage :

$$f: X \xrightarrow{U} U(X) \xrightarrow{V} V(U(X))$$

On note $f(x) = v(u(x)) = (v \circ u)(x)$ (on lit « u suivie de v » ou « v rond u »).

ATTENTION:

v(u(x)) n'a de sens que si $x \in D_U$ et $u(x) \in D_v$: Attention au domaine de définition D_{VoU}

Ex: Soit la fonction u définie sur \mathbb{R} par u(x) = x - 1 et la fonction v définie sur \mathbb{R}^* par $v(x) = \frac{1}{x}$

$$\bullet v \circ u : x \mapsto x - 1 \mapsto \frac{1}{x - 1}$$

 $v \circ u$ est définie si, et seulement si $x \in D_u$ et $u(x) \in D_v$: si et seulement si $x \ne 1$

ainsi
$$\mathbb{D} v \circ u =]-\infty$$
; $\mathbb{1}[\cup]1$; $+\infty$ [et $(v \circ u)(x) = \frac{1}{x-1}$

•
$$u \circ v : x \mapsto \frac{1}{x} \mapsto \frac{1}{x} - 1$$

 $u \circ v$ est définie si, et seulement si, $x \in D_v$ et $v(x) \in D_u$, si et seulement si $x \neq 0$.

Ainsi D
$$u \circ v = \mathbb{R}^*$$
 et $(u \circ v)(x) = \frac{1}{x} - 1$

Remarque: En général $v \circ u$ est différent de $u \circ v$.

2) Variations:

Soient u une fonction monotone définie sur I et v une fonction monotone définie sur J telles que : pour tout x appartenant à I, u(x) appartient à J.

- Si u et v ont même sens de variation, alors $v \circ u$ est croissante sur I.
- Si u et v ont des sens de variation contraire, alors $v \circ u$ est décroissante sur l.

Dém partielle :

Supposons que u est croissante sur I avec $a \in I$ et $b \in I$ tels que $a \le b$: on $au(a) \le u(b)$.

• Si ν est croissante sur J, alors $\nu(u(a)) \le \nu(u(b))$.

Ainsi $v \circ u$ est croissante.

• Si vest décroissante sur J, alors $v(u(a)) \ge v(u(b))$.

Ainsi $v \circ u$ est décroissante.

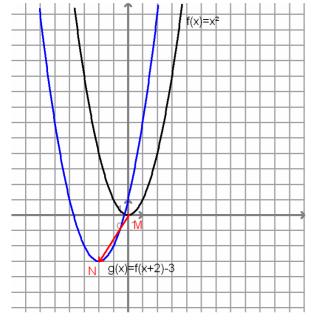
Ex: Soit la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x^2}$. Elle obtenue composition : $x \mapsto x^2 \mapsto \frac{1}{x^2}$

$$u(x) = x^2 e t v(x) = \frac{1}{x} f(x) = (v \circ u)(x)$$

On sait que la fonction carré strictement décroissante sur] - ∞ ; 0] et que la fonction inverse est strictement décroissante sur] - ∞ ; 0[\cup]0; + ∞ [. En conclusion on peut affirmer que f est strictement croissante sur] - ∞ ; 0[\cup]0; + ∞ [et que la fonction inverse est strictement décroissante sur] - ∞ ; 0[\cup]0; + ∞ [. En conclusion on peut affirmer que f est strictement décroissante sur] 0; + ∞ [.

III) Représentation de fonctions :

Soit f une fonction définie sur D et k un reél . On appelle C_f la courbe représentative de la fonction f dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) du plan.



- la courbe représentative de la fonction g(x) = f(x) + k est l'image de \mathcal{C}_f par la translation de vecteur $k \overrightarrow{j}$.
- la courbe représentative de la fonction g(x) = f(x) + k est l'image de \mathcal{C}_f par la translation de vecteur $-k\vec{i}$.

(Voir TD sur Grafix...)